Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569044

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Insulins , Succinate Dehydrogenase , Animals , Humans , Male , Mice , Insulins/metabolism , Lipids , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Succinate Dehydrogenase/metabolism
2.
Anal Bioanal Chem ; 416(11): 2725-2735, 2024 May.
Article En | MEDLINE | ID: mdl-37801117

Immuno-mass spectrometry imaging uses lanthanide-conjugated antibodies to spatially quantify biomolecules via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The multi-element capabilities allow for highly multiplexed analyses that may include both conjugated antibodies and endogenous metals to reveal relationships between disease and chemical composition. Sample handling is known to perturb the composition of the endogenous elements, but there has been little investigation into the effects of immunolabelling and coverslipping. Here, we used cryofixed muscle sections to examine the impact of immunolabelling steps on the concentrations of a Gd-conjugated anti-dystrophin primary antibody, and the endogenous metals Cu and Zn. Primary antibody incubation resulted in a decrease in Zn, and an increase in Cu. Zn was removed from the cytoplasm where it was hypothesised to be more labile, whereas concentrated locations of Zn remained in the cell membrane in all samples that underwent the immunostaining process. Cu increased in concentration and was found mostly in the cell membrane. The concentration of the Gd-conjugated antibody when compared to the standard air-dried sample was not significantly different when coverslipped using an organic mounting medium, whereas use of an aqueous mounting medium significantly reduced the concentration of Gd. These results build on the knowledge of how certain sample handling techniques change elemental concentrations and distributions in tissue sections. Immunolabelling steps impact the concentration of endogenous elements, and separate histological sections are required for the quantitative analysis of endogenous elements and biomolecules. Additionally, coverslipping tissue sections for complementary immunohistochemical/immunofluorescent imaging may compromise the integrity of the elemental label, and organic mounting media are recommended over aqueous mounting media.


Laser Therapy , Metals , Mass Spectrometry/methods , Metals/analysis , Laser Therapy/methods , Diagnostic Imaging
3.
Aging Cell ; 22(6): e13842, 2023 06.
Article En | MEDLINE | ID: mdl-37132288

Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.


Nanopore Sequencing , Male , Humans , Sequence Deletion/genetics , Aging/genetics , Longevity , DNA, Mitochondrial/genetics
4.
J Gerontol A Biol Sci Med Sci ; 78(5): 771-779, 2023 05 11.
Article En | MEDLINE | ID: mdl-36762848

We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.


Genome, Mitochondrial , Humans , Rats , Female , Male , Animals , Mice , Rats, Inbred F344 , Rats, Inbred WKY , Rats, Inbred Lew , Rats, Inbred Strains , Estradiol
5.
Geroscience ; 45(1): 555-567, 2023 02.
Article En | MEDLINE | ID: mdl-36178599

Beta-guanidinopropionic acid (GPA) is a creatine analog suggested as a treatment for hypertension, diabetes, and obesity, which manifest primarily in older adults. A notable side effect of GPA is the induction of mitochondrial DNA deletion mutations. We hypothesized that mtDNA deletions contribute to muscle aging and used the mutation promoting effect of GPA to examine the impact of mtDNA deletions on muscles with differential vulnerability to aging. Rats were treated with GPA for up to 4 months starting at 14 or 30 months of age. We examined quadriceps and adductor longus muscles as the quadriceps exhibits profound age-induced deterioration, while adductor longus is maintained. GPA decreased body and muscle mass and mtDNA copy number while increasing mtDNA deletion frequency. The interactions between age and GPA treatment observed in the quadriceps were not observed in the adductor longus. GPA had negative mitochondrial effects in as little as 4 weeks. GPA treatment exacerbated mtDNA deletions and muscle aging phenotypes in the quadriceps, an age-sensitive muscle, while the adductor longus was spared. GPA has been proposed for use in age-associated diseases, yet the pharmacodynamics of GPA differ with age and include the detrimental induction of mtDNA deletions, a mitochondrial genotoxic stress that is pronounced in muscles that are most vulnerable to aging. Further research is needed to determine if the proposed benefits of GPA on hypertension, diabetes, and obesity outweigh the detrimental mitochondrial and myopathic side effects.


Creatine , Rodentia , Rats , Animals , Muscle, Skeletal , DNA, Mitochondrial/genetics , Obesity/genetics , DNA Damage
6.
PLoS One ; 17(10): e0271850, 2022.
Article En | MEDLINE | ID: mdl-36288327

Remdesivir is a leading therapy in patients with moderate to severe coronavirus 2 (SARS-CoV-2) infection; the majority of whom are older individuals. Remdesivir is a nucleoside analog that incorporates into nascent viral RNA, inhibiting RNA-directed RNA polymerases, including that of SARS-CoV-2. Less is known about remdesivir's effects on mitochondria, particularly in older adults where mitochondria are known to be dysfunctional. Furthermore, its effect on age-induced mitochondrial mutations and copy number has not been previously studied. We hypothesized that remdesivir adversely affects mtDNA copy number and deletion mutation frequency in aged rodents. To test this hypothesis, 30-month-old male F333BNF1 rats were treated with remdesivir for three months. To determine if remdesivir adversely affects mtDNA, we measured copy number and mtDNA deletion frequency in rat hearts, kidneys, and skeletal muscles using digital PCR. We found no effects from three months of remdesivir treatment on mtDNA copy number or deletion mutation frequency in 33-month-old rats. These data support the notion that remdesivir does not compromise mtDNA quality or quantity at old age in mammals. Future work should focus on examining additional tissues such as brain and liver, and extend testing to human clinical samples.


COVID-19 , DNA, Mitochondrial , Animals , Child, Preschool , Humans , Male , Rats , Adenosine Monophosphate/pharmacology , Alanine , DNA Copy Number Variations , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/genetics , Mammals/genetics , Mitochondria/genetics , Nucleosides , RNA, Viral , SARS-CoV-2 , Sequence Deletion
7.
Mitochondrion ; 65: 176-183, 2022 07.
Article En | MEDLINE | ID: mdl-35787470

The mitochondrial genome (mtDNA) is an important source of disease-causing genetic variability, but existing sequencing methods limit understanding, precluding phased measurement of mutations and clear detection of large sporadic deletions. We adapted a method for amplification-free sequence enrichment using Cas9 cleavage to obtain full length nanopore reads of mtDNA. We then utilized the long reads to phase mutations in a patient with an mtDNA-linked syndrome and demonstrated that this method can map age-induced mtDNA deletions. We believe this method will offer deeper insight into our understanding of mtDNA variation.


Genome, Mitochondrial , Base Sequence , CRISPR-Cas Systems , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Mitochondria/genetics , Sequence Analysis, DNA/methods
8.
Rejuvenation Res ; 24(6): 434-440, 2021 Dec.
Article En | MEDLINE | ID: mdl-34779265

Metformin, a commonly used well-tolerated treatment for type 2 diabetes, is being deployed in clinical trials to ameliorate aging in older nondiabetic humans. Concerningly, some experiments in model organisms have suggested that metformin use at old ages shortens life span and is toxic to mitochondria. The demonstrated safety of metformin therapy in humans and the conflicting data from model organisms compelled us to test the hypothesis that metformin treatment would be toxic to older rats. To define an effective dose in 30-month-old hybrid rats, we evaluated two doses of metformin (0.1%, 0.75% of the diet) and treated the rats for 4 months. Body mass decreased at the 0.75% dose. Neither dose affected mortality between 30 and 34 months of age. We assessed mitochondrial integrity by measuring mitochondrial DNA (mtDNA) copy number and deletion mutation frequency, and mitochondrial respiration in skeletal muscle and the heart. In skeletal muscle, we observed no effect of metformin on quadriceps mass, mtDNA copy number, or deletion frequency. In the heart, metformin-treated rats had higher mtDNA copy number, lower cardiac mass, with no change in mtDNA deletion frequency. Metformin treatment resulted in lower mitochondrial complex I-dependent respiration in the heart. We found that, in old rats, metformin did not compromise mtDNA integrity, did not affect mortality, and may have cardiac benefits. These data provide some reassurance that a metformin intervention in aged mammals is not toxic at appropriate doses.


Diabetes Mellitus, Type 2 , Metformin , Aging , Animals , DNA, Mitochondrial/genetics , Diabetes Mellitus, Type 2/drug therapy , Metformin/pharmacology , Mitochondria , Rats
9.
BMC Cardiovasc Disord ; 21(1): 368, 2021 08 02.
Article En | MEDLINE | ID: mdl-34340660

BACKGROUND: Age-associated inflammation and immune system dysfunction have been implicated as mechanisms that increase risk for adverse long-term procedural outcomes in older adults. The purpose of this study was to investigate relationships between baseline inflammatory and innate antiviral gene expression and outcomes after transcatheter aortic valve replacement (TAVR) in older adults with severe aortic stenosis. METHODS: We performed a retrospective case-control study comparing pre-procedural pro-inflammatory and Type 1 interferon (IFN) gene expression in 48 controls with favorable outcomes (alive 1 year after TAVR with improved quality of life [QoL]) versus 48 individuals with unfavorable outcomes (dead by 1 year or alive at 1 year but with reduced QoL). Gene expression was evaluated in whole blood via (1) pre-defined composite scores of 19 inflammation-associated genes and 34 Type I IFN response genes, and (2) pro-inflammatory and antiviral transcription factor activity inferred from promotor based bioinformatics analyses of genes showing > 25% difference in average expression levels across groups. All analyses were adjusted for age, gender, body mass index, diabetes, immunosuppression, cardiovascular disease (CVD), and frailty. RESULTS: Relative to controls, those with unfavorable outcomes demonstrated higher expression of the pro-inflammatory gene composite prior to TAVR (p < 0.01) and bioinformatic indicators of elevated Nuclear Factor kB (p < 0.001) and Activator Protein 1 (p < 0.001) transcription factor activity, but no significant differences in Type I IFN-related gene expression. CONCLUSIONS: These results demonstrate that a pro-inflammatory state prior to TAVR, independent of CVD severity and frailty status, is associated with worse long-term procedural outcomes.


Aortic Valve Stenosis/surgery , Inflammation Mediators/blood , Transcatheter Aortic Valve Replacement/adverse effects , Viruses/immunology , Aged , Aged, 80 and over , Aortic Valve Stenosis/blood , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/mortality , Biomarkers/blood , Female , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Male , Retrospective Studies , Risk Assessment , Risk Factors , Severity of Illness Index , Time Factors , Transcatheter Aortic Valve Replacement/mortality , Transcriptome , Treatment Outcome , United States
10.
Anal Bioanal Chem ; 413(21): 5509-5516, 2021 Sep.
Article En | MEDLINE | ID: mdl-34304281

Immuno-mass spectrometry imaging (iMSI) uses laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to determine the spatial expression of biomolecules in tissue sections following immunolabelling with antibodies conjugated to a metal reporter. As with all immunolabelling techniques, the binding efficiency of multiplexed staining can be affected by a number of factors including epitope blocking and other forms of steric hindrance. To date, the effects on the binding of metal-conjugated antibodies to their epitopes in a multiplexed analysis have yet to be quantitatively explored by iMSI. Here we describe a protocol to investigate the effects of multiplexing on reproducible binding using the muscle proteins, dystrophin, sarcospan, and myosin as a model, with antibodies conjugated with Maxpar® reagents before histological application to murine quadriceps sections using standard immunolabelling protocols and imaging with LA-ICP-MS. The antibodies were each individually applied to eight sections, and multiplexed to another eight sections. The average concentrations of the lanthanide analytes were determined, before statistical analyses found there was no significant difference between the individual and multiplexed application of the antibodies. These analyses provide a framework for ensuring reproducibility of antibody binding during multiplexed iMSI, which will allow quantitative exploration of protein-protein interactions and provide a greater understanding of fundamental biological processes during healthy and diseased states.


Antibodies/analysis , Immunohistochemistry/methods , Mass Spectrometry/methods , Muscle Proteins/analysis , Animals , Mice , Reproducibility of Results
11.
Geroscience ; 43(3): 1253-1264, 2021 06.
Article En | MEDLINE | ID: mdl-33740224

Mitochondrial DNA (mtDNA) quality and quantity relate to two hallmarks of aging-genomic instability and mitochondrial dysfunction. Physical performance relies on mitochondrial integrity and declines with age, yet the interactions between mtDNA quantity, quality, and physical performance are unclear. Using a validated digital PCR assay specific for mtDNA deletions, we tested the hypothesis that skeletal muscle mtDNA deletion mutation frequency (i.e., a measure of mtDNA quality) or mtDNA copy number predicts physical performance in older adults. Total DNA was isolated from vastus lateralis muscle biopsies and used to quantitate mtDNA copy number and mtDNA deletion frequency by digital PCR. The biopsies were obtained from a cross-sectional cohort of 53 adults aged 50 to 86 years. Before the biopsy procedure, physical performance measurements were collected, including VO2max, modified physical performance test score, 6-min walk distance, gait speed, grip strength, and total lean and leg mass. Linear regression models were used to evaluate the relationships between age, sex, and the outcomes. We found that mtDNA deletion mutation frequency increased exponentially with advancing age. On average from ages 50 to 86, deletion frequency increased from 0.008 to 0.15%, an 18-fold increase. Females may have lower deletion frequencies than males at older ages. We also measured declines in VO2max and mtDNA copy number with age in both sexes. The mtDNA deletion frequency measured from single skeletal muscle biopsies predicted 13.3% of the variation in VO2max. Copy number explained 22.6% of the variation in mtDNA deletion frequency and 10.4% of the lean mass variation. We found predictive relationships between age, mtDNA deletion mutation frequency, mtDNA copy number, and physical performance. These data are consistent with a role for mitochondrial function and genome integrity in maintaining physical performance with age. Analyses of mtDNA quality and quantity in larger cohorts and longitudinal studies could extend our understanding of the importance of mitochondrial DNA in human aging and longevity.


DNA Copy Number Variations , DNA, Mitochondrial , Aged , Aged, 80 and over , Cross-Sectional Studies , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Female , Humans , Male , Middle Aged , Mitochondria , Muscle, Skeletal/metabolism , Physical Functional Performance , Sequence Deletion/genetics
12.
Sci Rep ; 11(1): 1128, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441839

Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 µg kg-1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation.


Dystrophin/analysis , Muscular Dystrophy, Duchenne/metabolism , Quadriceps Muscle/chemistry , Adolescent , Aged, 80 and over , Animals , Child , Dystrophin/genetics , Dystrophin/immunology , Female , Fluorescent Antibody Technique , Gadolinium , Humans , Immunohistochemistry , Male , Mass Spectrometry , Mice , Muscle Fibers, Skeletal/chemistry , Muscular Dystrophy, Duchenne/genetics , Mutation
13.
Aging Clin Exp Res ; 33(7): 1811-1820, 2021 Jul.
Article En | MEDLINE | ID: mdl-32965609

BACKGROUND: Mitochondrial DNA (mtDNA) deletion mutations lead to electron transport chain-deficient cells and age-induced cell loss in multiple tissues and mammalian species. Accurate quantitation of somatic mtDNA deletion mutations could serve as an index of age-induced cell loss. Quantitation of mtDNA deletion molecules is confounded by their low abundance in tissue homogenates, the diversity of deletion breakpoints, stochastic accumulation in single cells, and mosaic distribution between cells. AIMS: Translate a pre-clinical assay to quantitate mtDNA deletions for use in human DNA samples, with technical and biological validation, and test this assay on human subjects of different ages. METHODS: We developed and validated a high-throughput droplet digital PCR assay that quantitates human mtDNA deletion frequency. RESULTS: Analysis of human quadriceps muscle samples from 14 male subjects demonstrated that mtDNA deletion frequency increases exponentially with age-on average, a 98-fold increase from age 20-80. Sequence analysis of amplification products confirmed the specificity of the assay for human mtDNA deletion breakpoints. Titration of synthetic mutation mixtures found a lower limit of detection of at least 0.6 parts per million. Using muscle DNA from 6-month-old mtDNA mutator mice, we measured a 6.4-fold increase in mtDNA deletion frequency (i.e., compared to wild-type mice), biologically validating the approach. DISCUSSION/CONCLUSIONS: The exponential increase in mtDNA deletion frequency is concomitant with the known muscle fiber loss and accelerating mortality that occurs with age. The improved assay permits the accurate and sensitive quantification of deletion mutations from DNA samples and is sufficient to measure changes in mtDNA deletion mutation frequency in healthy individuals across the lifespan and, therefore, patients with suspected mitochondrial diseases.


DNA, Mitochondrial , Muscle, Skeletal , Adult , Aged , Aged, 80 and over , Aging/genetics , Animals , DNA, Mitochondrial/genetics , Humans , Male , Mice , Middle Aged , Mitochondria , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Sequence Deletion , Young Adult
14.
Aging Cell ; 19(11): e13166, 2020 11.
Article En | MEDLINE | ID: mdl-33049094

Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.


DNA, Mitochondrial/genetics , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Point Mutation , Animals , Diet, High-Fat , Disease Models, Animal , Homeostasis , Mice , Mitochondria, Liver/genetics , Mitochondria, Muscle/genetics , Nutrients , Starvation/genetics , Starvation/metabolism
15.
Sci Transl Med ; 12(555)2020 08 05.
Article En | MEDLINE | ID: mdl-32759275

Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1 We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.


Adipocytes, Brown , Estrogen Receptor alpha , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Thermogenesis , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
16.
Muscle Nerve ; 62(6): 688-698, 2020 12.
Article En | MEDLINE | ID: mdl-32820569

Serial muscle biopsies within clinical trials for Duchenne muscular dystrophy (DMD) are critical to document therapeutic responses. Less invasive means of sampling muscle are needed. We analyzed a retrospective consecutive case-series cohort of vacuum-assisted core needle muscle biopsy procedures performed on healthy and dystrophic individuals at a single institution assessing for safety and reliability of obtaining sufficient high-quality biopsy tissue for histologic assessment in adult and pediatric subjects. Of 471 muscle cores from 128 biopsy procedures, 377-550 mg of total muscle tissue was obtained per procedure with mean core weight of 129 mg (SD, 25.1 mg). All biopsies were adequate for histological assessment. There were no significant adverse events. This core needle biopsy approach, when combined with improved sample processing, provides a safe means to consistently obtain muscle samples for diagnostic and clinical trial applications.


Biopsy, Large-Core Needle/methods , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Adolescent , Adult , Aged , Anesthetics, Local/therapeutic use , Biopsy, Large-Core Needle/instrumentation , Case-Control Studies , Child , Child, Preschool , Conscious Sedation , Female , Humans , Image-Guided Biopsy , Male , Middle Aged , Pain, Procedural/prevention & control , Reproducibility of Results , Specimen Handling/methods , Tissue Preservation/methods , Ultrasonography , Vacuum , Young Adult
17.
Cells ; 9(8)2020 07 29.
Article En | MEDLINE | ID: mdl-32751058

"The main conclusions are that the ageing atrophy begins as early as around 25 years of age and thereafter accelerates and, for this muscle, is caused mainly by a loss of fibers and to a lesser extent by a reduction in fiber size [...].


Mitochondria , Neuromuscular Junction , Cellular Senescence , Muscles , Neuromuscular Junction/metabolism
18.
Front Physiol ; 11: 690, 2020.
Article En | MEDLINE | ID: mdl-32636760

Duchenne muscular dystrophy (DMD) is characterized by rapid wasting of skeletal muscle. Mitochondrial dysfunction is a well-known pathological feature of DMD. However, whether mitochondrial dysfunction occurs before muscle fiber damage in DMD pathology is not well known. Furthermore, the impact upon heterozygous female mdx carriers (mdx/+), who display dystrophin mosaicism, has received little attention. We hypothesized that dystrophin deletion leads to mitochondrial dysfunction, and that this may occur before myofiber necrosis. As a secondary complication to mitochondrial dysfunction, we also hypothesized metabolic abnormalities prior to the onset of muscle damage. In this study, we detected aberrant mitochondrial morphology, reduced cristae number, and large mitochondrial vacuoles from both male and female mdx mice prior to the onset of muscle damage. Furthermore, we systematically characterized mitochondria during disease progression starting before the onset of muscle damage, noting additional changes in mitochondrial DNA copy number and regulators of mitochondrial size. We further detected mild metabolic and mitochondrial impairments in female mdx carrier mice that were exacerbated with high-fat diet feeding. Lastly, inhibition of the strong autophagic program observed in adolescent mdx male mice via administration of the autophagy inhibitor leupeptin did not improve skeletal muscle pathology. These results are in line with previous data and suggest that before the onset of myofiber necrosis, mitochondrial and metabolic abnormalities are present within the mdx mouse.

19.
J Cytol Histol ; 11(2)2020.
Article En | MEDLINE | ID: mdl-32566369

Human muscle biopsies are increasingly important for diagnosis, research, and to monitor therapeutic trials. We examined the use of a self-contained, vacuum-assisted biopsy system and a novel muscle freezing technique to improve, simplify, and standardize human muscle biopsy collection and cryopreservation in older adults. The VACORA vacuum-assisted biopsy system was deployed in muscle biopsies of 12 individuals ranging in age from 57 to 80 years. This office-based approach was well tolerated as it is minimally invasive, uses only local anesthetic, and has a quick recovery. To maximize biopsy sample quality and reproducibility, we developed a novel muscle sample freezing protocol. Fresh muscle biopsy samples were placed into readily available tissue cassettes followed by direct freezing in liquid nitrogen. After this modified snap freezing protocol, frozen muscle samples were enrobed in embedding medium for cryosectioning. We examined the effect of this freezing approach in histological sections of rodent and human muscle samples. The VACORA Biopsy System provided as many as four skeletal muscle core samples from a single biopsy site. Biopsy samples from 12 older adults weighed an average of 147.5 ± 11 mg each and had a consistent size and shape. There were no complications, and the residual scar is less than 10 mm. The freezing method using standard tissue cassettes with direct freezing in liquid nitrogen yielded high quality cryopreserved muscle tissue suitable for histological analysis without the need for isopentane and with little to no freeze-thaw damage. These enhancements have streamlined and improved the consistency of our muscle biopsy protocol and provide sufficient high-quality sample for multi-dimensional downstream studies of human muscle in aging and disease.

20.
EMBO J ; 39(13): e104073, 2020 07 01.
Article En | MEDLINE | ID: mdl-32432379

Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.


Cryopreservation , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Oxygen Consumption , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Male , Mice
...